JIAIC[S

COMMUNICATIONS

Published on Web 12/06/2006

Synthesis and Biological Activity of PTEN-Resistant Analogues of
Phosphatidylinositol 3,4,5-Trisphosphate
Honglu Zhang, Nicolas Markadieu,* Renaud Beauwens,* Christophe Erneux,® and
Glenn D. Prestwich*'

Department of Medicinal Chemistry, The Weisity of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah
84108-1257, Department of Cell Physiology and Institut de Recherche Interdisciplinaire (IRIBHMErkite Libre
de Bruxelles, Campus Erasme, Route de Lennik 808, 1070 Bruxelles, Belgium

Received July 24, 2006; E-mail: gprestwich@pharm.utah.edu

The phosphoinositide 3-kinase (Pl 3-K) signaling pathway Scheme 1. Synthesis of Phosphorothioates 17
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phosphatase action in cells. This chemical biology approach to a Conditions: (a) TIPDSG imidazole, Py, 88%; (b) MOMCI, DIPEA,
dissection of the PI 3-K pathway is complementary to the use of puF, 65°C, 63%; (c) TBAF, THF, 77%; (dN,N-dimethylphosphoramidite,
siRNA knockdowns or genetic knockouts for PTEN and SHIP. We 1H-tetrazole,m-CPBA, 81%; (e) TBAF3H,O, DMF, 91%; (f) TESCI,
focused first on a 3-stabilized Ptdins(3,4,53Ralogue, that is, one  imidazole, CHCIy, 88%; (g) DIBAL-H, CH,Cl, —78°C, 84%; (h) bis(2-
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Phosphorothioates are phosphomimetics that show reduced rategpsequenm-CPBA oxidation generated the protected 4,5-bis-
of enzyme-mediated hydrolysi$However, the replacement ofP phosphates in good yield. Since attempts to remove TBDPS in
O by P=S also affects the, of the phosphate and removes a  he presence of the cyanoethyl phosphate protecting groups failed
H-bond acceptof*2For example, the phosphorothioate analogue {4 gjve a satisfactory result, the TBDPS was replaced with TES at
of Ptdlns(3)P_ had reduced binding activity for cogna_lte binding  this stage. Reduction of the benzoy! edevith DIBAL-H at —78
proteins, due in part to reduced H-bondiiyve hypothesmed thgt °C followed by thiophosphorylation with bis(2-cyanoethoxy)-
a 3-phosphorothioate of Ptdins(3,4,5¢Buld be either an antagonist (diisopropylamino)phosphine in the presence Bittetrazole and
ora Iong-lived agonist in the Pl 3-K signaling pathway because of phenylacetyl disulfide provided the desired TES eﬂﬁdbepro-
reduced dephosphorylation by PTEN. Moreover, the methylene- (oq(ion of TES with the weakly acidic reagent MHin methanol
phosphonate analogue of Ptdins(3)P bound selectively to one of 456 the key advanced intermediatm 80% yield. Condensation
two cognate binding proteirté.We now describe the first asym- ot 7 ith each of four different freshly prepared 1,2@iacyl-sn
me_trlc total syntheses of two PtdIns(3,4 5yhalogues that are glycero cyanoethyIN,N-diisopropylamino) phosphoramiditéa—d
resistant to the 3-phosphatase PTEN: 3-#dins(3,4,5)pand in the presence ofH-tetrazole, followed by-BuOOH oxidation,
3-MP—PtdIns(3,4,5)k Further, we show both selective binding g5 the fully protected lipid8a—d. 2 Removal of the cyanoethy
to a Ptdins(3,4,5)Fbinding protein and the ability of these .0 0 with triethylamine and bis(trimethylsilyl)trifluoroacetamide
analogues to increase sodium transport in A6 cell monolayers. (BSTFA) followed by removal of the MOM and methy! ester groups

The synthetic sequence to 3-phosphorothie#lins(3,4,5)p with TMSBr afforded the 3-PFPtdIns(3,4,5)Panalogueda—d.
(3-PT—Pdins(3,4,5)f) is illustrated in Scheme 1. Treatment of Scheme 2 summarizes the preparation of the 3-methylenephos-
TBDPS etheB!516with the bU”(y bifunctional reagent TBDPSLCI phonatePtdInS(3,4,5)l? (S'MP_PtdlnS(3,4,5)B 2)’ in which
in the presence of imidazole selectively afforded the diol 4,5-bis- reduction of4 with DIBAL-H was followed by alkylation with
silyl ether in 88% yield as a single product; the diols were then dimethyl phosphonomethyltriflate BULi/HMPA) to give meth-
protected to give compourt Next, TIPDS deprotection, bisphos- ylenephosphonatEin 80% yield. Use of excess HMPA to chelate
phorylation with dimethyIN,N-diisopropylphosphoramidite, and 4,0 | i cation and enhance the nucleophilicity of the alkoxide was

the key to obtaining a high yield. Selective desilylatiorl6fwith
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Scheme 2. Synthesis of Methylenephosphonates 22
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aConditions: (a) DIBAL-H, CHCl,, —78°C, 88%; (b)n-BuLi, HMPA,
dimethyl phosphonomethyltriflate, THF 78 °C to rt, 80%; (c) TBAF,
THF, 90%; (d)N,N-dimethylphosphoramidite H-tetrazolem-CPBA, 95%;
(e) TBAF3H,0, DMF, 75%); (f) H-tetrazole 8a—d, CH,Cly, rt, t-BuOOH;
(g) TEA, BSTFA, CHCN; (h) TMSBI/CHCI, (2:3), rt; (i) MeOH.
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Figure 1. Stimulation of A6 cell monolayers. Experimental details for

triplicate measurements of sodium transpok(l uA/cm?)1® are in the
Supporting Information. A representative result is illustrated.

followed by coupling with the phosphoramiditeéda—d gave
protected lipidsl2a—d. Removal of the protective groups gave the
3-MP-PtdIns(3,4,5)Panaloguea—d.

To test the function of these analogues, we used carrier-mediated

intracellular delivery® of Ptdins(3,4,5) which is known to activate
GLUT4 translocation to the plasma membrarend sodium
transport® The physiological function of the 3-PTand 3-MP-
Ptdins(3,4,5)Panalogues was examined in A6 cell monolayers, a
renal epithelium model that expresses epithelial sodium channel
(ENaC)20 ENaC activity is the rate-limiting step of the sodium
transport and is stimulated by insufhDiC,¢—PtdIns(3,4,5)Ris

an early mediator of the insulin-stimulated sodium transport in A6
cells?® Thus, we compared the effect of the unmodified @i€
Ptdins(3,4,5)Pwith diCys—3-PT—PtdIns(3,4,5)P1c and diGe—
3-MP-PtdIns(3,4,5)P 2c on sodium transport across confluent
monolayers of A6 cells. As shown in Figure 1, apical addition of
either 1c or 2c increased sodium transport. Moreover, the 3-MP
analogue2c was the most potent and long-lived mediator of sodium
transport, and the 3-PT analogbealso extended sodium transport
compared to unstabilized PtdIns(3,4,5)Phe lag time observed
between PtdIns(3,4,5)Rnalogue addition and the final effect on
sodium transport was due to intracellular delivery. The spatiotem-

poral coordination of lipid production and removal are likely
required for normal physiology, and thus PtdIns(3,4;53meces-
sary but not sufficient to fully mimic the action of insulin.

We tested the binding of the 3-PT and 3-MP analogues to the
specific PtdIns(3,4,5)Fbinding protein Grpl (Supporting Informa-
tion Figure 2). DiG—3-PT—PtdIns(3,4,5)P1b bound to Grpl with
5-fold reduced affinity relative to that of dicPtdIns(3,4,5)R, but
the diG—3-MP analogue2b showed no binding at all. Moreover,
while PTEN rapidly hydrolyzed dig-PtdIns(3,4,5)R no hydrolysis
was observed with eithdb or 2b (Supporting Information Figure
3). Interestingly, dig—3-PT analoguéb showed>90% inhibition
of PTEN activity at 0.4uM, while the diG—3-MP analogue2b
required 40uM for >90% inhibition (A. Branch, P. Neilsen,
personal communication). Thus, analogdeand?2 have potential
as protein-selective biological tools in the Pl 3-K signaling pathway.
Additional functional assays and interactions with PTEN will be
reported in due course.
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